
phys. stat. sol. (c) 1, No. 11, 2658–2661 (2004) / DOI 10.1002/pssc.200405418 

© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

Phonon spectrum and group velocities  
in wurtzite hetero-structures 

A. A. Balandin*, 1, D. L. Nika2, and E. P. Pokatilov2  
1 Nano-Device Laboratory, Department of Electrical Engineering, University of California–Riverside, 

Riverside, California 92521, USA 
2 Department of Theoretical Physics, State University of Moldova, Kishinev, Moldova 

Received 9 July 2004, revised 25 October 2004, accepted 26 October 2004 
Published online 17 November 2004 

PACS 63.22.+m 

We calculated acoustic phonon spectrum and group velocities in three-layered wurtzite heterostructures. 
The heterostructure layer thickness has been chosen on the order of the room-temperature dominant pho-
non wavelength so that phonon spectrum is strongly modified compared to bulk. We derived equations of 
motion for different phonon polarizations in the anisotropic medium approximation, which allowed us to 
include the specifics of the wurtzite lattice. It has also been demonstrated that the phonon group velocity 
in the core layer can be made higher or lower than that in the corresponding bulk material by a proper se-
lection of the cladding material and its thickness. Obtained results add to the concept of phonon engineer-
ing by demonstrating a possibility of enhancement of phonon transport, i.e., thermal conduction, along 
certain direction in heterostructures with properly tuned parameters. 

© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

1 Introduction 

Heterostructures based on wurtzite materials (such as A1N/GaN/A1N and related) have been recently 
proposed for a variety of electronic, optical and spintronic applications. Knowledge of confined phonon 
spectrum in hetero- and nanostructures is important for modeling the electron transport in such struc-
tures. Recently, it was also shown that the change in the acoustic phonon spectrum induced by size quan-
tization in hetero- and nanostructures led to significant modification of thermal transport [1,2]. In this 
work we present derivation of the acoustic phonon spectrum and calculation of the phonon group veloci-
ties in ultra-thin layer of wurtzite GaN embedded within A1N cladding layers. The core layer thickness d 
has been chosen on the order of the room-temperature dominant phonon wavelength λ so that phonon 
spectrum in the structure is strongly modified compared to bulk. We derived equations of motion for 
different phonon polarizations in the anisotropic medium approximation, which allowed us to include 
specifics of the wurtzite lattice. We also show that the phonon group velocity in the core layer can be 
made higher or lower than in the corresponding bulk material by a proper selection of the “acoustically 
harder” cladding material and adjusting its thickness [3, 4]. 

2 Theoretical approach 

In order to investigate the role of the cladding material on acoustic phonon spectrum of ultra-thin films 
we consider a free-standing single thin film, e.g. slab, and a free-standing three-layered structure. The 
axis X1 and axis X2 are in the plane of the layers while the axis X3 is directed perpendicular to the layer 
surfaces. As an example wurtzite system we first consider AlN/GaN/AlGaN heterostructure. It is further 
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assumed that the layers have hexagonal symmetry with a crystallographic axis c directed along a coordi-
nate axis X3. The equation of motion for elastic vibrations in an anisotropic medium can be written as  
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 is the displacement vector, ρ  is the mass density of the material, 
mi

σ  is the 

elastic stress tensor given by kjmikjmi Uc=σ , and kjU is the strain tensor. When taking derivatives in 

Eq. (1), one has to take into account that the system is non-uniform along the X3 axis. The elastic mod-

ules are the piece-wise functions of 
3
x : 
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To reduce the number of subscript indexes in the coefficients mikjc , we adopt the two-index notations. In 

crystals with hexagonal symmetry the following equalities are valid: 
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 An application of the anisotropic continuum model allows us to explicitly include the specifics of the 
wurtzite crystals. The equations of motion obtained in anisotropic medium approximation with such 
selection of the elastic constants will be completely different from the equations of motion in the iso-
tropic elastic medium approximation or anisotropic medium approximation for cubic crystals. The axis 
X1 is assumed to be along the propagation direction of the acoustic waves. Since the three-layered struc-
ture is homogeneous in the plane (X1, X2), we look for the solution of the Eq. (1) in the following form 
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where ui are the amplitudes of the displacement vector components, ω is the phonon frequency k is the 
phonon wave vector and i  is imaginary unity. A shear polarization, e.g. the displacement vector is paral-
lel to the structure surfaces, can be distinguished from the others using the following definition 
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By substituting Eq. (4) for i=2 to Eq. (5) and taking into account Eqs. (2-3), one can turn the partial 
differential Eq. (5) into an ordinary second order differential equation  
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Derivatives 
3

ik
dc

dx
 account for the fact that the structure is heterogeneous. In the case of a slab, one can 

obtain a simple analytical solution from Eq. (6) by setting 44

3

0
dc
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= . The external surfaces of the three-

layered structure are assumed to be free. As a result, the force components along all coordinate axes 
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equal to zero, e.g., 0
321
=== PPP , where

kiki
nP σ= , and n
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 is the vector normal to the surfaces of 

the structure. Thus, on the outer surfaces of the structure the following relationship is satisfied  
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For the two other vibrational polarizations (i=1,3) with the displacement vector components 
1

U  and 
'

3 3
U U= −i  we obtain from Eqs. (1) and 94) the following system of two interrelated equations  
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with the following boundary conditions on the outer surfaces of the structure  
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Due to the spatial symmetry of the considered three-layered structure and the mathematical form of Eqs. 

(8-9), the displacement vector should have components with an opposite parity, e.g., 
1 3

( , )S A
u u  or 
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u u , where 
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symmetrical function of x3. We will denote the symmetric (SA) and anti-symmetric (AS) displacement 

vectors with the corresponding upper indices. Thus, the displacement vectors 
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define independent polarizations, which, together with the shear modes, compose a 

full set of normal vibrational modes in the structure. In the case of a slab the SA modes are referred to as 
dilatational modes while AS modes are termed the flexural modes.   

3 Results and discussion 

To obtain the phonon dispersion, we solve the differential Eq. (6) with boundary condition of Eq. (7) for 
shear polarization, and the system of Eqs. (8) and (9) subject to the boundary conditions of Eq. (10) for 
SA and AS polarizations. The equations are solved using the finite difference method [3, 4]. The calcula-
tions are performed for each value of the phonon wave vector k from the interval k∈ (0, π/a), where a is 
the lattice constant in the plane (X1, X2). After obtaining the phonon dispersion, we calculate the phonon 

group velocity as a function of k. In Fig. 1 we show the dispersion relation ( )sh

n
kω�  and the group 

velocity ( )sh

n
v k  for a set of shear modes. Figure 1(a) presents data for a GaN slab with thickness d=6 

nm. Figure 1(b) presents data for the AlN/GaN/AlN heterostructure. One can see from Fig. 1 that in the 

zone center, the phonon group velocity is a liner function of the phonon wave vector ( )sh

n n
v k a k= . 

With increasing k all phonon dispersion curves approach a limit 
0 0
( ) ,k v kω =� �  where 

2

0
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TA
v v GaN= is the velocity of the transverse acoustic wave propagating along X1 axis and polarized 

along X2 axis. For very large values of k, all phonon modes in the slab become GaN bulk-like. Strong 
size- quantization of the phonon spectrum for small values of k leading to the emergence of the quasi-
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optical modes and significant decrease of the phonon group velocity ( 2( ) ( )
TA

n
v k v GaN< ) constitute 

the phonon confinement effects in an ultra-thin slab. These effects were shown to have a pronounce 
influence on the lattice (phonon) thermal conductivity of semiconductor quantum wells, when calculated 
with actual full phonon spectrum [1]. 
 The inhomogeneity of the three-layered structure changes the shape of the dispersion curves both 
quantitatively and qualitatively. For large n at large k the phonon modes are (AlN, TA2) bulk–type. The 
phonon modes in the multi-layered structure are formed as result of superposition of vibrations from 

different layers on the structure interfaces, which leads to the mode hybridization. Depending on the k 
value the hybrid modes can reveal signatures of the specific layers signatures rather then those of the 
averaged structure properties. For example, the group velocity for the mode with n=1 at moderate k is 

2 ( )
TA
v AlN , while at large k the group velocity is 2 ( )

TA
v GaN  despite the fact that the total width of the 

cladding AlN layers is five times larger than the width of the core GaN layer. The group velocity of the 

mode with 5n =  tends monotonically to the bulk velocity 2 ( )
TA
v AlN . 

 

 

Fig. 1 Phonon group velocities as functions of the phonon wavevector for the shear polarization. Results are shown 
for (a) 6 nm wide slab and (b) three-layered heterostructures with dimensions 2.5 nm / 1 nm/ 2.5 nm. In the figure 
legend, the level is defined by the quantum number n unlike the phonon mode, which is defined by the quantum 
number and wave vector k.  
 
 Overall in the ultra-thin slabs, the phonon group velocity decreases due to the phonon confinement 
effect [1], while in the three-layered heterostructure with “acoustically hard” cladding layers, the phonon 
group velocity can be larger than the bulk phonon velocity in the core layer material. One should note 
here, that the results are obtained for the coherent phonon transport regime (d~λ), when the phonon 
waves extend though the whole structure and “feel” the presence of the boundaries. A possibility of tun-
ing the phonon group velocity may have a profound effect on thermal transport in hetero- and nanostruc-
tures [1-3] as well as on carrier-phonon scattering rates [4–6]. 

Acknowledgements This work has been supported by the U.S. CRDF award MP2-3044-CH-02.  

References 

[1] A. Balandin and K.L. Wang, Phys. Rev. B 58, 1544 (1998). 
[2] J. Zou and A.A. Balandin, J. Appl. Phys. 89, 2932 (2001). 
[3] E.P. Pokatilov, D.L. Nika, and A.A. Balandin, Superlattices Microstruct. 33, 155 (2003). 
[4] E.P. Pokatilov, D.L. Nika, and A.A. Balandin, J. Appl. Phys. 95, 5626 (2004). 
[5] E.P. Pokatilov, D.L. Nika, and A.A. Balandin, Appl. Phys. Lett. 85, 825 (2004). 
[6] A. Balandin, Phys. Low-Dimens. Struct. 1/2, 1 (2000); 5/6, 73 (2000). 


